Telomere Lengthening and Other Functions of Telomerase
نویسندگان
چکیده
Telomerase is an enzyme that maintains the length of the telomere. The telomere length specifies the number of divisions a cell can undergo before it finally dies (i.e. the proliferative potential of cells). For example, telomerase is activated in embryonic cell lines and the telomere length is maintained at a constant level; therefore, these cells have an unlimited fission potential. Stem cells are characterized by a lower telomerase activity, which enables only partial compensation for the shortening of telomeres. Somatic cells are usually characterized by the absence of telomerase activity. Telomere shortening leads to the attainment of the Hayflick limit, the transition of cells to a state of senescence. The cells subsequently enter a state of crisis, accompanied by massive cell death. The surviving cells become cancer cells, which are capable both of dividing indefinitely and maintaining telomere length (usually with the aid of telomerase). Telomerase is a reverse transcriptase. It consists of two major components: telomerase RNA (TER) and reverse transcriptase (TERT). TER is a non-coding RNA, and it contains the region which serves as a template for telomere synthesis. An increasing number of articles focussing on the alternative functions of telomerase components have recently started appearing. The present review summarizes data on the structure, biogenesis, and functions of telomerase.
منابع مشابه
P-86: Evaluation of Telomere Length, Telomerase and Telomeric Repeat Containing RNA (TERRA) Expression Levels in Cumulus Cells of PCOS Patients
Background Polycystic ovary syndrome (PCOS) is one of the reasons of infertility in women with chronic anovulation. Ovulation process is tightly regulated by molecular mechanisms controlling proliferation/differentiation of cells. Telomeres, TTAGGG tandem repeats, are transcribed into a non coding RNA, named TERRA. Recent studies suggest that TERRA sustain several important functions at chromos...
متن کاملBLM helicase complements disrupted type II telomere lengthening in telomerase-negative sgs1 yeast.
Recombination-mediated pathways for telomere lengthening may be utilized in the absence of telomerase activity. The RecQ-like helicases, BLM and Sgs1, are implicated in recombination-mediated telomere lengthening in human cells and budding yeast, respectively. Here, we show that BLM expression rescues disrupted telomere lengthening in telomerase-negative sgs1 yeast. BLM helicase activity is req...
متن کاملG-quadruplex preferentially forms at the very 3′ end of vertebrate telomeric DNA
Human chromosome ends are protected with kilobases repeats of TTAGGG. Telomere DNA shortens at replication. This shortening in most tumor cells is compensated by telomerase that adds telomere repeats to the 3' end of the G-rich telomere strand. Four TTAGGG repeats can fold into G-quadruplex that is a poor substrate for telomerase. This property has been suggested to regulate telomerase activity...
متن کاملتلومراز و مهار آن در سرطان: مقاله مروری
Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal" mso-tsty...
متن کاملTelomerase-independent telomere length maintenance in the absence of alternative lengthening of telomeres-associated promyelocytic leukemia bodies.
Immortal tumor cells and cell lines employ a telomere maintenance mechanism that allows them to escape the normal limits on proliferative potential. In the absence of telomerase, telomere length may be maintained by an alternative lengthening of telomeres (ALT) mechanism. All human ALT cell lines described thus far have nuclear domains of unknown function, termed ALT-associated promyelocytic le...
متن کامل